Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.365
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2313004121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564631

RESUMO

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP's many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we quantify the motion of chromosomal loci and cytoplasmic tracer particles. In the absence of polyP and upon starvation, we observe a 2- to 10-fold increase in mean cytoplasmic diffusivity. Tracer particles reveal that polyP also modulates the partitioning between a "more mobile" and a "less mobile" population: Small particles in cells unable to make polyP are more likely to be "mobile" and explore more of the cytoplasm, particularly during starvation. Concomitant with this larger freedom of motion in polyP-deficient cells, we observe decompaction of the nucleoid and an increase in the steady-state concentration of ATP. The dramatic polyP-dependent effects we observe on cytoplasmic transport properties occur under nitrogen starvation, but not carbon starvation, suggesting that polyP may have distinct functions under different types of starvation.


Assuntos
Polifosfatos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Polifosfatos/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo
2.
Biochem Biophys Res Commun ; 710: 149826, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581946

RESUMO

Cytosolic peptide:N-glycanase (NGLY1, PNGase) is an enzyme that cleaves N-glycans from misfolded glycoproteins. In 2012, a human genetic disorder, NGLY1 deficiency, was first reported to be caused by mutations of the NGLY1 gene. Since then, there has been rapid progresses on NGLY1 biology, and gene therapy has been proposed as a promising therapeutic option for NGLY1 deficiency. While a plasma/urine biomarker has also been developed for this disease, detection of NGLY1 activity could be another viable option for early diagnosis of NGLY1 deficiency. Thus far, several in vitro and in cellulo NGLY1 assays have been reported, but those assay systems have several issues that must be addressed in order to develop an assay system compatible for routine clinical examination. Here, we show a facile, highly sensitive in vitro assay system that could be used to detect NGLY1 activity by utilizing its sequence editing function, i.e. conversion of glycosylated Asn into Asp, followed by a detection of newly generated epitope (HA)-tag by anti-HA antibody. Using this ELISA-based assay, we detected endogenous NGLY1 activity in as little as 2 µg of crude extract, which is the equivalent of 5 × 103 cells. Our system also detects NGLY1 activity from cells with compromised NGLY1 activity, such as iPS cells from patient samples. This assay system could be applied in future clinical examinations to achieve an early diagnosis of NGLY1 deficiency.


Assuntos
Defeitos Congênitos da Glicosilação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Humanos , Citosol/metabolismo , Glicosilação , Glicoproteínas/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética
3.
Methods Mol Biol ; 2801: 189-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578422

RESUMO

The opening of connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells is regulated by a number of physiological parameters, including extracellular and intracellular Ca2+ ions. Submicromolar variations of the cytosolic Ca2+ concentration ([Ca2+]c) are per se sufficient to trigger extracellular bursts of messenger molecules through connexin HCs, thus mediating paracrine signaling. In this chapter, we present a quantitative method to measure the opening dynamics of connexin HCs expressed in a single HeLa cell upon stimulation by a canonical InsP3-mediated [Ca2+]c transient. The protocol relies on a combination of Ca2+ imaging and patch-clamp techniques. The insights gained from our method are expected to make a significant contribution to understanding the structure-function relationship of connexin HCs. The protocol is also suitable to screen candidate therapeutic compounds to treat connexin-related diseases linked to HC dysfunction.


Assuntos
Cálcio , Conexinas , Animais , Humanos , Conexinas/genética , Conexinas/metabolismo , Células HeLa , Cálcio/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
4.
PLoS Biol ; 22(3): e3002526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427703

RESUMO

Live imaging of RNA molecules constitutes an invaluable means to track the dynamics of mRNAs, but live imaging in Caenorhabditis elegans has been difficult to achieve. Endogenous transcripts have been observed in nuclei, but endogenous mRNAs have not been detected in the cytoplasm, and functional mRNAs have not been generated. Here, we have adapted live imaging methods to visualize mRNA in embryonic cells. We have tagged endogenous transcripts with MS2 hairpins in the 3' untranslated region (UTR) and visualized them after adjusting MS2 Coat Protein (MCP) expression. A reduced number of these transcripts accumulates in the cytoplasm, leading to loss-of-function phenotypes. In addition, during epithelial morphogenesis, MS2-tagged mRNAs for dlg-1 fail to associate with the adherens junction, as observed for untagged, endogenous mRNAs. These defects are reversed by inactivating the nonsense-mediated decay pathway. RNA accumulates in the cytoplasm, mutant phenotypes are rescued, and dlg-1 RNA associates with the adherens junction. These data suggest that MS2 repeats can induce the degradation of endogenous RNAs and alter their cytoplasmic distribution. Although our focus is RNAs expressed in epithelial cells during morphogenesis, we find that this method can be applied to other cell types and stages.


Assuntos
Caenorhabditis elegans , RNA , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Citosol/metabolismo
5.
EMBO Mol Med ; 16(4): 678-699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467840

RESUMO

Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , DNA/metabolismo , Citosol/metabolismo , Imunidade Inata
6.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542297

RESUMO

Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol. Native-PAGE and Western blot analysis of neuronal cytosol from mouse brains demonstrated the presence of both GM1 and monomeric aSyn in the neuronal cytosol of normal mouse brain. To demonstrate that an adequate level of GM1 prevents the aggregation of aSyn, we used NG108-15 and SH-SY5Y cells with and without treatment of 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), which inhibits the synthesis/expression of GM1. Cells treated with PPMP to reduce GM1 expression showed a significant increase in the formation of aggregated aSyn compared to untreated cells. We thus demonstrated that sufficient GM1 prevents the aggregation of aSyn. For this to occur, aSyn and GM1 must show proximity within the neuron. The present study provides evidence for such co-localization in neuronal cytosol, which also facilitates the inverse interaction revealed in studies with the two cell types above. This adds to the explanation of how GM1 prevents the aggregation of aSyn and onset of Parkinson's disease.


Assuntos
Neuroblastoma , Doença de Parkinson , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Citosol/metabolismo , Gangliosídeo G(M1)/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo
7.
Commun Biol ; 7(1): 391, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555279

RESUMO

Mitochondrial stress inducers such as carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and oligomycin trigger the DELE1-HRI branch of the integrated stress response (ISR) pathway. Previous studies performed using epitope-tagged DELE1 showed that these stresses induced the cleavage of DELE1 to DELE1-S, which stimulates HRI. Here, we report that mitochondrial protein import stress (MPIS) is an overarching stress that triggers the DELE1-HRI pathway, and that endogenous DELE1 could be cleaved into two forms, DELE1-S and DELE1-VS, the latter accumulating only upon non-depolarizing MPIS. Surprisingly, while the mitochondrial protease OMA1 was crucial for DELE1 cleavage in HeLa cells, it was dispensable in HEK293T cells, suggesting that multiple proteases may be involved in DELE1 cleavage. In support, we identified a role for the mitochondrial protease, HtrA2, in mediating DELE1 cleavage into DELE1-VS, and showed that a Parkinson's disease (PD)-associated HtrA2 mutant displayed reduced DELE1 processing ability, suggesting a novel mechanism linking PD pathogenesis to mitochondrial stress. Our data further suggest that DELE1 is likely cleaved into DELE1-S in the cytosol, while the DELE1-VS form might be generated during halted translocation into mitochondria. Together, this study identifies MPIS as the overarching stress detected by DELE1 and identifies a novel role for HtrA2 in DELE1 processing.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Humanos , Citosol/metabolismo , Células HEK293 , Células HeLa , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542224

RESUMO

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Assuntos
Miócitos Cardíacos , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Polirribossomos/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas
9.
Proc Natl Acad Sci U S A ; 121(10): e2319491121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427601

RESUMO

Translocation of cytoplasmic molecules to the plasma membrane is commonplace in cell signaling. Membrane localization has been hypothesized to increase intermolecular association rates; however, it has also been argued that association should be faster in the cytosol because membrane diffusion is slow. Here, we directly compare an identical association reaction, the binding of complementary DNA strands, in solution and on supported membranes. The measured rate constants show that for a 10-µm-radius spherical cell, association is 22- to 33-fold faster at the membrane than in the cytoplasm. The kinetic advantage depends on cell size and is essentially negligible for typical ~1 µm prokaryotic cells. The rate enhancement is attributable to a combination of higher encounter rates in two dimensions and a higher reaction probability per encounter.


Assuntos
Transdução de Sinais , Citoplasma/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Membranas , Cinética
10.
Methods Mol Biol ; 2760: 21-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468080

RESUMO

As the field of plant synthetic biology continues to grow, Agrobacterium-mediated transient expression has become an essential method to rapidly test pathway candidate genes in a combinatorial fashion. This is especially important when elucidating and engineering more complex pathways to produce commercially relevant chemicals like many terpenoids, a widely diverse class of natural products of often industrial relevance. Agrobacterium-mediated transient expression has facilitated multiplex expression of recombinant and modified enzymes, including synthetic biology approaches to compartmentalize the biosynthesis of terpenoids subcellularly. Here, we describe methods on how to deploy Agrobacterium-mediated transient expression in Nicotiana benthamiana to rapidly develop terpenoid pathways and compartmentalize terpenoid biosynthesis within plastids, the cytosol, or at the surface of lipid droplets.


Assuntos
Agrobacterium , Terpenos , Terpenos/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Plantas/metabolismo , Tabaco/genética , Citosol/metabolismo
11.
Methods Mol Biol ; 2776: 289-302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502512

RESUMO

Excluding the few dozen proteins encoded by the chloroplast and mitochondrial genomes, the majority of plant cell proteins are synthesized by cytosolic ribosomes. Most of these nuclear-encoded proteins are then targeted to specific cell compartments thanks to localization signals present in their amino acid sequence. These signals can be specific amino acid sequences known as transit peptides, or post-translational modifications, ability to interact with specific proteins or other more complex regulatory processes. Furthermore, in eukaryotic cells, protein synthesis can be regulated so that certain proteins are synthesized close to their destination site, thus enabling local protein synthesis in specific compartments of the cell. Previous studies have revealed that such locally translating cytosolic ribosomes are present in the vicinity of mitochondria and emerging views suggest that localized translation near chloroplasts could also occur. However, in higher plants, very little information is available on molecular mechanisms controlling these processes and there is a need to characterize cytosolic ribosomes associated with organelles membranes. To this goal, this protocol describes the purification of higher plant chloroplast and mitochondria and the organelle-associated cytosolic ribosomes.


Assuntos
Cloroplastos , Ribossomos , Citosol/metabolismo , Cloroplastos/metabolismo , Ribossomos/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Mitocôndrias/metabolismo
12.
ACS Chem Biol ; 19(4): 908-915, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38525961

RESUMO

The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.


Assuntos
Peptídeos Penetradores de Células , Hidrolases , Proteínas , Humanos , Citosol/metabolismo , Proteínas/metabolismo , Transporte Biológico , Endossomos/metabolismo , Peptídeos Penetradores de Células/metabolismo , Concentração de Íons de Hidrogênio
13.
Biochem Biophys Res Commun ; 707: 149783, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38493746

RESUMO

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Assuntos
Adesinas Bacterianas , Porphyromonas gingivalis , Animais , Camundongos , Humanos , Cisteína Endopeptidases Gingipaínas/metabolismo , Células CACO-2 , Porphyromonas gingivalis/fisiologia , Citosol/metabolismo , Ocludina/metabolismo , Adesinas Bacterianas/metabolismo
14.
ACS Appl Mater Interfaces ; 16(13): 15819-15831, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517139

RESUMO

Nanoparticles usually enter cells through energy-dependent endocytosis that involves their cytosolic entry via biomembrane-coated endosomes. In contrast, direct translocation of nanoparticles with straight access to cytosol/subcellular components without any membrane coating is limited to very selective conditions/approaches. Here we show that nanoparticles can switch from energy-dependent endocytosis to energy-independent direct membrane penetration once an amphiphile is electrostatically bound to their surface. Compared to endocytotic uptake, this direct cell translocation is faster and nanoparticles are distributed inside the cytosol without any lysosomal trafficking. We found that this direct cell translocation option is sensitive to the charges of both the nanoparticles and the amphiphile. We propose that an electrostatically bound amphiphile induces temporary opening of the cell membrane, which allows direct cell translocation of nanoparticles. This approach can be adapted for efficient subcellular targeting of nanoparticles and nanoparticle-based drug delivery application, bypassing the endosomal trapping and lysosomal degradation.


Assuntos
Nanopartículas , Citosol/metabolismo , Nanopartículas/metabolismo , Endocitose , Endossomos/metabolismo , Sistemas de Liberação de Medicamentos
15.
ACS Synth Biol ; 13(3): 792-803, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38404221

RESUMO

Protein degradation is a highly regulated cellular process crucial to enable the high dynamic range of the response to external and internal stimuli and to balance protein biosynthesis to maintain cell homeostasis. Within mammalian cells, hundreds of E3 ubiquitin ligases target specific protein substrates and could be repurposed for synthetic biology. Here, we present a systematic analysis of the four protein subunits of the multiprotein E3 ligase complex as scaffolds for the designed degrons. While all of them were functional, the fusion of a fragment of Skp1 with the target protein enabled the most effective degradation. Combination with heterodimerizing peptides, protease substrate sites, and chemically inducible dimerizers enabled the regulation of protein degradation. While the investigated subunits of E3 ligases showed variable degradation efficiency of the membrane and cytosolic and nuclear proteins, the bipartite SSD (SOCSbox-Skp1(ΔC111)) degron enabled fast degradation of protein targets in all tested cellular compartments, including the nucleus and plasma membrane, in different cell lines and could be chemically regulated. These subunits could be employed for research as well as for diverse applications, as demonstrated in the regulation of Cas9 and chimeric antigen receptor proteins.


Assuntos
60652 , Proteínas de Membrana , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Citosol/metabolismo , Mamíferos/metabolismo
16.
J Exp Bot ; 75(8): 2299-2312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301663

RESUMO

Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.


Assuntos
Técnicas Biossensoriais , Hordeum , Citosol/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estresse Fisiológico , Oxirredução , Glutationa/metabolismo , Técnicas Biossensoriais/métodos
17.
ACS Nano ; 18(10): 7618-7632, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422984

RESUMO

Calcium nanoparticles have been investigated for applications, such as drug and gene delivery. Additionally, Ca2+ serves as a crucial second messenger in the activation of immune cells. However, few studies have systematically studied the effects of calcium nanoparticles on the calcium levels and functions within immune cells. In this study, we explore the potential of calcium nanoparticles as a vehicle to deliver calcium into the cytosol of dendritic cells (DCs) and influence their functions. We synthesized calcium hydroxide nanoparticles, coated them with a layer of silica to prevent rapid degradation, and further conjugated them with anti-CD205 antibodies to achieve targeted delivery to DCs. Our results indicate that these nanoparticles can efficiently enter DCs and release calcium ions in a controlled manner. This elevation in cytosolic calcium activates both the NFAT and NF-κB pathways, in turn promoting the expression of costimulatory molecules, antigen-presenting molecules, and pro-inflammatory cytokines. In mouse tumor models, the calcium nanoparticles enhanced the antitumor immune response and augmented the efficacy of both radiotherapy and chemotherapy without introducing additional toxicity. Our study introduces a safe nanoparticle immunomodulator with potential widespread applications in cancer therapy.


Assuntos
Cálcio , Nanopartículas , Animais , Camundongos , Cálcio/metabolismo , Citosol/metabolismo , Citocinas/metabolismo , Células Dendríticas , Imunoterapia/métodos
18.
Cell Commun Signal ; 22(1): 117, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347600

RESUMO

Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.


Assuntos
Neoplasias Colorretais , Proteína HMGB1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/metabolismo , Citosol/metabolismo , Proteína HMGB1/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/genética , Microambiente Tumoral
19.
Nature ; 627(8003): 382-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418878

RESUMO

Calcium (Ca2+) is an essential nutrient for plants and a cellular signal, but excessive levels can be toxic and inhibit growth1,2. To thrive in dynamic environments, plants must monitor and maintain cytosolic Ca2+ homeostasis by regulating numerous Ca2+ transporters3. Here we report two signalling pathways in Arabidopsis thaliana that converge on the activation of vacuolar Ca2+/H+ exchangers (CAXs) to scavenge excess cytosolic Ca2+ in plants. One mechanism, activated in response to an elevated external Ca2+ level, entails calcineurin B-like (CBL) Ca2+ sensors and CBL-interacting protein kinases (CIPKs), which activate CAXs by phosphorylating a serine (S) cluster in the auto-inhibitory domain. The second pathway, triggered by molecular patterns associated with microorganisms, engages the immune receptor complex FLS2-BAK1 and the associated cytoplasmic kinases BIK1 and PBL1, which phosphorylate the same S-cluster in CAXs to modulate Ca2+ signals in immunity. These Ca2+-dependent (CBL-CIPK) and Ca2+-independent (FLS2-BAK1-BIK1/PBL1) mechanisms combine to balance plant growth and immunity by regulating cytosolic Ca2+ homeostasis.


Assuntos
Arabidopsis , Cálcio , Homeostase , Imunidade Vegetal , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citosol/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Antiporters/metabolismo
20.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 239-245, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372088

RESUMO

UTP23 (UTP23 small subunit processome component) plays a pivotal role in the intricate processing and maturation of the small subunit of ribosomes within the nucleolus. In cases of nucleolar stress, such as those observed in certain tumor cells, the aberrant nucleolar organization and structure can lead to the translocation of nucleolar proteins into the nucleus or cytoplasm, consequently impacting the physiological processes of the tumor cells through non-ribosome-related functions. Our investigation revealed altered localization of UTP23 protein in colorectal cancer clinical tissue samples. Upon analyzing UTP23 expression and its correlation with patient prognosis in a cohort of 143 colorectal cancer patients, the result suggested that high cytoplasmic expression pattern of UTP23 was occured in early-stage metastasis-free colorectal cancer and was significantly associated with poor prognosis. Furthermore, we demonstrated that cytoplasmic expression of UTP23 significantly promoted the metastatic and invasive capabilities of colorectal cancer cells, which was not showed in the nucleollcalised UTP23. Intriguingly, mass spectrometry result suggested that KRT5 bind to UTP23 and showed a regulatory influence on UTP23 metastatic potential in colorectal cancer cells. Conclusively, our study demonstrated that the localization of UTP23 play a key role in colorectal cancer metastatic progression, which may serve as a novel prognostic indicator.


Assuntos
Neoplasias Colorretais , Proteínas Nucleares , Ribossomos , Humanos , Neoplasias Colorretais/patologia , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...